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A First-Order Level-2 Phase Transition in 
Thermodynamic Formalism 
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We show the existence of a phase transition at the level of measures for the 
generalized dimension of the maximal entropy measure in a model that was 
considered by F. Hofbauer and which is related to a model of M. Fisher. The 
model presented here is related to the one-dimensional Ising model in which a 
wall effect is assumed. In this situation, the problem has to be considered in the 
one-dimensional lattice N. In general there is no first-order transition for the 
Ising model in the lattice 77, but under our assumptions such transitions can 
occur. The Ising model has the purpose of explaining the magnetization of 
ferromagnetic systems at low temperatures. The main difference of our result 
from a previous result of F. Hofbauer is that the transition is analyzed in the 
setting of the generalized dimension. This setting is more closely related to the 
observables. The main purpose of this paper is to explain another mathematical 
model for phase transition using the mathematical results obtained by 
F. Hofbauer. We also use results of the thermodynamic formalism in an essential 
way. 

KEY WORDS: Phase transition; thermodynamic formalism; entropy; 
pressure; generalized dimension. 

I N T R O D U C T I O N  

T h e  g e n e r a l i z e d  d i m e n s i o n  w as  i n t r o d u c e d  s o m e  yea r s  ago  a n d  h a s  b e e n  

c o n s i d e r e d  a n d  a n a l y z e d  b y  seve ra l  a u t h o r s .  I n  ref. 13, we i n t r o d u c e d  s o m e  

o t h e r  m a t h e m a t i c a l  e l e m e n t s  in  t he  d e f i n i t i o n  of  g e n e r a l i z e d  d i m e n s i o n  a n d  

in  th i s  w a y  h a v e  a c o m p l e t e l y  r i g o r o u s  we l l -de f ined  m o d e l  t h a t  c a n  be  

a n a l y z e d  in  s eve ra l  d i f fe ren t  s i t u a t i o n s .  W e  a l so  s h o w e d ,  (13) f o l l o w i n g  t he  
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definition and the main features of the model, the existence of phase 
transitions. 

The important features of the new elements introduced in the defini- 
tion of generalized dimension are related to the pressure, equilibrium states 
associated with the pressure, and the concept (previously introduced by 
L. S. Young) of Hausdorff dimension of a measure. 

It is well known that the values of the capacity dimension (or box 
dimension) and Hausdorff dimension of a general set are not always the 
same. 

From a result of Young (24~ (using a concept that roughly speaking 
concerns the capacity dimension of a measure and was previously intro- 
duced by F. Ledrapier), when considering the Hausdorff dimension of a 
measure and the capacity dimension of a measure, the two concepts will 
agree in general situations (see considerations at the end of the paper). 

In our case this is an essential element in the understanding of the 
problem of phase transition and generalized dimension. 

Concepts related to the capacity dimension are more natural for 
analyzing the phase transition than the concept of Hausdorff dimen- 
sion (6'7'I9'21'22) because it deals with the observables. 

The situation that we will present here is not exactly the same as in 
ref. 13, but the same ideas can be applied in both cases. 

After ref. 13 was finished, we noticed that the phenomenon of a jump 
from an equilibrium state to another in a discontinuous fashion was also 
present in a model of Fisher (3'4) as presented by HofbauerJ 8~ This discon- 
tinuity happens in the setting of pressure and we will be able to analyze 
here the problem in the setting of generalized dimension. (7'22) 

We believe we can present here the ideas that relate pressure and 
generalized dimension in a more transparent way, due to the fact that our 
map is simpler to deal with. 

We will have to present a slightly different definition of generalized 
dimension that is suitable for the problem. This definition gives the correct 
model for understanding generalized dimension in the problem. 

The discontinuity of the derivative of the pressure is transferred to the 
same property for the generalized dimension by means of a Legendre trans- 
form. The pressure that physicists consider (most of the time) is less than 
the pressure of thermodynamic formalism considered here. 

We refer the reader to the paper of Hofbauer I8) for a more detailed 
mathematical framework and to the papers of Fisher (4~ for the physical 
problems where the model was derived. 

We also sugest that the reader who wishes more mathematical details 
read first refs. 8, 12, 13, 17, 20, and 23 and the final remarks of Section 2 
before beginning to read Section 1. 
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Here we will say that we have a first-order (respectively second-order) 
transition in the value t o if the generalized dimension has lack of differen- 
tiability (respectively lack of continuity of the derivative of the generalized 
dimension) in the valule t 0. We will say (as in ref. 13) that we have a level-2 
phase transition in the model if the probability laws one has to follow in 
choosing at random the centers of the balls for the coverings used in the 
definition of generalized dimensions (see Section 2 for complete definitions) 
have a discontinuous jump from one probability to a different one (see 
Section 2). 

In a forthcoming paper we will consider the Felderhof-Fisher critical 
exponent of a transition.~17~ 

We will show here the following theorem: 

Theorem.  The Fisher model presents a first-order level-2 phase 
transition for the generalized dimension. 

The proof of the theorem will be given in Section 2. 
The results presented here can be extended to hyperbolic rational 

maps and more general Jacobians. We prefer here to state more modest 
results that can be more easily understood. 

In Section 1, we make some general comments about the phase 
transition. 

In Section 3 we present an example where one can compute explicitly 
the results presented in Sections 1 and 2. 

1. G E N E R A L  C O N S I D E R A T I O N S  A B O U T  P H A S E  
T R A N S I T I O N S  

Consider a one-dimensional semilattice where each position is 
designated by a natural number n = 0, 1, 2, 3, 4 ..... Suppose in each position 
n we have the possibility of two spins, positively or negatively oriented. We 
will associate these two possibilities respectively with 0 and 1. 

In statistical mechanics, we are interested in the probability of a 
certain possible arrangement of spins in the lattice. Therefore, we are 
looking for a probability # in {0, 1 } ~ that asserts for each possible subset 
(Borelean set) A of {0, 1 }~ a number #(A) giving the probability of such 
an event. 

Suppose now we have an external parameter t (temperature, for 
example), such that for each value of t, we have #, the equilibrium proba- 
bility law that gives the probability of each possible arrangement of spins 
as above. 

A phase transition occurs, for instance, when there exists a certain 
transition value of the parameter to such that the family #t has a sudden 
discontinuity at to. 
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This can happen, for example, for magnetic systems due to a sudden 
magnetization of the lattice. One possibility, for instance, could happen 
when in any possible position n s N in the lattice, we have a spin negatively 
oriented (the arrangement { 1, 1, 1, 1,... }). 

This could be described in terms of measures by saying that the 
probability after the transition parameter to is equal to a delta-Dirac with 
mass one in the arrangement { 1, 1, 1,...}. 

We will analyze this occurrence in a different but equivalent situation 
in Section 2. The phase space will not be {0, 1 } ~, but the interval [0, 1 ]. 
We will consider the problem in the context of iterations of a one-dimen- 
sional map on the interval ['0, 1 ]. There are two reasons to do this. First, 
it is easier to visualize dimension and capacity, and second, there exist 
several techniques of smooth ergodic theory that can be applied in a very 
general context and are very helpful in understanding the problem. 

In Section 2 we will consider the map f ( z )  defined from [0, 1 ] in itself 
such that for 

z e [0, 1/2], f ( z )  = 2z 

zE [-1/2, 1], f ( z ) = 2 ( z -  1/2) 

Consider the following partition of [0, 1]: A = [0, 1/2) and B =  [1/2, 1]. 
For each point x e  [0, 1], associate the sequence x,  of zeros and ones, 
(x , , )n~,  where 

x, = 1 if and only iff~(x) ~ A 

x~ = 0 if and only if f "(x) ~ B 

It is easy to see that for each x ~ [0, 1 ], the sequence (x,) is the binary 
expansion of x. Consider the map such that for each x s [0, 1 ] associate 
(xn) = ~(x)e {0, 1 }~. This ~ is a change of coordinates from the interval 
[0, 1] to the set {0, 1 }~ previously mentioned. 

The shift map o-: {0, 1 } ~  --, {0, 1} ~ such that for {Uo, Ul, u2,...} gives 
us as image the sequence {Ul, u2, u3 .... }, clearly satisfying the equation 

a(~(x)) = o'o ~(x) = ~ of (x )  = ~ ( f ( x ) )  

Therefore, instead of analyzing the Bernoulli system ~ in {0, 1 } ~, we 
can alternatively took for the system given by the map f acting on [0, 1 ]. 

We can also transfer probabilities from the setting of {0, 1 } ~ to the 
setting of [0, 1]. Note that the arrangement {1, 1, 1, 1,...}s {0, 1} ~ is 
associated with the point 0 E [0, 1 ]. This is the different, but equivalent, 
setting we mentioned before. 
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The results presented in ref. 13 are reasonably general and some ideas 
can be applied in the Fisher model, as will be done in Section 2. 

The results in ref. 13 are for rational maps. The map f(z) considered 
here in fact can be seen as the complex polynomial z 2 acting on the unit 
circle. Any complex polynomial is a rational map, and in the particular 
case of the map z 2 the Julia set is the unit circle. Therefore, we are dealing 
here with a specific example of the general case considered in ref. 13. 

In fact, Hofbauer considered essentially this simple transformation f 
and showed that if one considers a certain complicated potential, then, in 
some cases, the equilibrium state is not unique. (8) We will explore this 
result here, showing that in fact we have a phase transition. 

We refer the reader to refs. 1, 2, 5, 6-17, 19, 21, and 22 for results 
about phase transition, equilibrium measures and some applications. 

2. THE P R O O F  OF THE MAIN T H E O R E M  

Consider f(z) defined from [0, 1 ] in itself as 

~ [o, 1/23, f (~ )  = 2~ 

z e  [1/2, 1], f(z) = . 2 ( z -  1/2) 

Note that the Liapunov number is constant equal log2, and 
f (0 )  = 0. Denote Mo = [1/2, 1], M1 = [1/4, 1/2], M2 = [1/8, 1/4], 
M3 = [1/16, 1/8],..., and M~  = {0}. 

Consider also a,  a sequence of negative numbers such that 
l i m n ~ a n = 0 a n d s k = a 0 + a l + . . - + a k ,  k ~ N ,  n e N .  

Define g: [0, 1]--* ~ a scalar function such that g(z)=ak for zEM,  
and g(0) = 0. 

Note that the results of thermodynamic formalism in ref. 20 are for 
potentials g of a different kind than the ones we will consider here. For  
the potentials considered in ref. 20, the pressure is differentiable and 
equilibrium states are unique (no phase transition). 

It follows from ref. 8 that under the hypothesis 

e&> l 
k = 0  

there exists a unique equilibrium state for the variational problem 
associated with the pressure 

f~M(f) 

822/60/3-4-8 
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where M(f) is the set of invariant probabilities for f and h(~) is the 
entropy of ~ s M(f) (see refs. 18, 20, and 23) for definitions). 

The entropy plays the role of kinetic energy and the function g 
plays the role of an external potential term. In our case we can think as 
g(z) associated with the temperature. Equilibrium measures (also called 
maximal pressure measures) play the role of Gibbs states. (19'2~ 

We can always transfer results from one setting to the other by means 
of the function ~ defined in Section 1. 

We consider g fixed and add a new parameter B e N, obtaining in this 
way a new scalar function Bg. 

We assume here as in ref. 8 that 

• (k+l)eSk<oo 
k = 0  

Romark. The case Zk~176 can be also analyzed, but 
should be seen as a second-order transition. We will not consider this case 
here (see ref. 17). 

Now consider the parameter  B. When we increase this value B, we find 
a first value Bo such that 

e BSk = 1 

k = O  

In ref. 8 it is shown that for such Bo 

O=P(Bog)= sup [h(f)+ Bo f g(z)df(z)l 
e M(.f) 

and there exist two equilibrium measures v and rio (the delta Dirac with 
mass one in the point zero). Note that as f - l ( 0 ) = 0 ,  then fi0 is in M(f). 

The Jacobian of the measure v is by definition the function defined for 
z ~ [0, 1 ], v-almost everywhere, such that 

v(f(B(z, r))) J(z) = lira 
r~O v ( B ( z ,  r ) )  

It is well known that h(v)= ~ log J(z)dr(z). 
The notion of the Jacobian of a measure is quite natural. In the case 

where v (this does not happen here) is the Lebesgue measure 2, then the 
Jacobian would be the derivative of f .  

We refer the reader to ref. 8 for the above facts. 
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It follows from the usual arguments in the thermodynamic formalism 
that there exists a positive function h such that 

eBO g(z) h (z) 
J(z )  1 

h(f (z) )  

The function h is explicitly obtained in ref. 8. Therefore, 

- l o g  J(z) = B o g(z) + log h(z) - log h( f (z )  ) 

We can suppose that h is v-integrable in our model (see Section 3). 
Consider now an external parameter t e ~ and the one-parameter 

family of scalar functions 

- t log J(z) = tB o g(z) + [ + t log h(z)] - t log h(f (z) )  

As M ( f )  is the set of invariant measures, then for any ~ e M(f ) ,  

f l o g  h(z) d~(z) - f log h(f (z) )  d6(z) = 0 

Therefore, for any t ~ 

P ( t B o g ( z ) ) = P ( - t l o g J ( z ) ) =  sup [ h ( ~ ) - t  f logJ(z)d~(z)]  
~ M ( f )  

Denote p(t) = P(tBo g(z)). Therefore, p(1) -- P(B o g) = 0, and for t < 1, 
p(t) > 0. Note also that p ( 0 ) =  log 2 (see ref. 8). 

From the theorem on p. 239 in ref. 8, for each t < 1, there exists a 
unique equilibrium state vt such that 

h(v,) - t ~ log J(z) dv,(z) = h(v,) + f tB o g(z) dv,(z) = P(tB o g) > 0 
g d 

We have also that for t > 1, P(tBo g ) =  0 and 6o is the only equilibrium 
state for P(tBo). 

Given a measure ~ ~ M (f ) ,  by definition, HD(O), the Hausdorff dimen- 
sion of the measure 3, is the value (a~ 

HD(~) = inf{HD(A): ~(A) = 1 } 

Denote h(t) = h(vt), HD(t)  = HD(vt), and L(t) = t ~ log J(z) dv,(z). 
In the same way as in refs. 12 and 13, we have 

p'(t) = -- f log J(z) dvt(z ) 
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Note also that Vo is the maximal measure, which in this case is the 
Lebesgue probability on I-0, 1 ]. 

From the theorem of p. 236 of ref. 8, the measure v 1 = v is not the 
Lebesgue probability 2. Therefore h(v)< log 2. 

The graph of p(t) is shown in Fig. 1. 
Remember that 

h(v~) = f log J(z) dv,(z) = f log J(z) d~(z) 

Note that P(t) is not linear for t e  [0, 1]. 
Therefore, in the same way as in ref. 13, we are following a unique 

equilibrium v t state until we find the critical value t =  1, where there 
appears another equilibrium state 6o, which will be followed as a unique 
equilibrium state for t > 1. 

Remark. In the case Zk~_o ( k +  1)eSk= oo, the derivative of p at 1 is 
zero and therefore we have a second-order transition. The reason is that 
the entropy of a 6-Dirac measure is zero. 

We would like now to explain the analogy of the situation presented 
here with the case covered in ref. 13. 

The Lebesgue measure 2 (the maximal measure for f )  plays the role 
of # in ref. 13. 

As we are considering here P ( - t  log J(z)) instead of 
P ( - t  log If ' (z)l  ), we will have to introduce a scaling reference measure to 
measure balls of "size" 3. We mean by this that for each z ~ [0, 1], a ball 
of "size" ~ with respect to v is in fact a ball of radius ~ such that 
v(B(z, ~')) = 3. This point was not noticed in ref. 13, because If'(z)l is like 
the Jacobian of Lebesgue measure. 

h(v)=H(vl~ 

1 

Fig. 1. Graph of the pressure p(t). 
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Now that we have already presented the essential features of the 
model; we will proceed formally in an analogous way as in ref. 13. 

The relation with the generalized dimension of the maximal entropy 
measure and Legendre-Fenchel transforms is the following: Given ~ e fie, 
find t<  1 such that p ' ( t )=  - ~  log2. The value q is given by q = H D ( t ) - e t .  

We suppose these three variables are related. 
Now for each q ~ R, define 

q - HD(t)  
Y-(q) (*) 

Now we will show how the value Y-(q) can be obtained as the analog 
of the generalized dimension as defined in ref. 13. 

Suppose q E [~ is given (and therefore t and ~). 
For each q fixed, our system recognizes just the measure vt (and also 

the measure v) for t related to the value q by the relation above. For  each 
> 0, 6 > 0, consider A contained in the support of the measure vt such 

that v t ( A ) > l - 6 .  Now consider for each z ~ A  the value ~ such that 
v(B(z, ~))= 4. 

We point out here the essential difference from ref. 13. In ref. 13 we 
used - l o g  [f'(z)[ instead of - l o g  J(z) because there we were looking for 
balls with radius (size) 4, and here we are looking for balls with radius ~" 
that have v-measure (size) 4. This is the reason for the consideration of 
v(B(z, ~'))= ~ and the introduction of a scaling reference measure. Now, 
from refs. 12, 13, 17, and 20 we have 

- f log J(z) dvt(z ) = p'(t) = - a  log 2 
J 

We have also from ref. 18, for z v,-almost everywhere 

nlzIl - l o g  2~ = lim 1 log [d(fJ(z))] - '  
nw+ oo F/ j = 0  

From this it follows from ref. 17 that 3A1(4) , A2(~) such that for z 
vt-almost everywhere and z e A, we have 

where 

A 1 ( 4 ) 4  :~ < v ( B ( z ,  ~ ) )  < A 2 ( 4 )  4 ~ 

log A1(4) 
lim - -  = 0 
~ 0 log 
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and 

lim logA2(~) 0 
~ ~ 0 log 

We will explain the above claim in more detail. 
We point out the following very important point: the measure v is not 

a homogeneous measure. Nevertheless, if we avoid points in right 
neighborhoods of 0 and 0.5, we have h bounded above and below. Using 
the reasoning of remark 5 in ref. 17, we have 

v B z, ~ [ I  J ( f f ( z ) )  -1 
j = 0  

for some A ~ ~. Therefore, if we take A a large set and not covering right 
neighborhoods of 0 and 0.5 and supposing ~ of the form 1/2 n, we obtain 
AI(~) and A2(~ ) as above. 

The above argument can be done in a mathematically rigorous way, 
but we omit the details here. See ref. 17 and Section 3 for mathematical 
details. 

Now, we point out that to cover A with balls of radius ~ [such that 
v(B(z, ~')) = 4] means to cover A with balls of radius ~(1/~). In fact, A1 and 
A2 will play no role here. Now we consider the maximal measure 
(Lebesgue probability 2 in our case) of the ball B(z, ~), that is, the value 
~= ~1/~), because 2(B(z, ~)) = ~. 

Consider now the minimum number of balls necessary to cover A, 
denoted by UiB(z i ,  ~), where i has a range in a finite set (dependent on 
A, ~, 6); consider the sum 

log Z ,~(~(z, ~'i)) q log E (~',)q log E ~q/~ 
log ~ log ~ tog 

Now, as in ref. 13, we consider all possible A such that v~(A)> 1 -  (5 
and consider the supremum of all possible sums. Finally, considering 
lim sup when 6 ~ 1 and ~ ~ 0, the number of such balls will increase 
exponentially as ~-HD(~) = ~ HD(~)/~.(24) We refer the reader of ref. 24 and 
also to the final remarks of this paper for the rigorous mathematical 
setting. 

Finally, we have from the same considerations of Theorem 4.4 in 
ref. 24 that the value of the above quotient goes to 

- HD(t)  + q = q -  HD(t)  

(see also Proposition 1 in ref. 13). 
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This value agrees with Y-(q) as defined in (,). 
In the same way as in ref. 13, we have for V(t)=P(- t ) / log2 the 

equation V(Y(q)) = q, because 

h( - Y(q)) + ~ ~ log J(z) dDj-(q)(Z) 
V(J(q)) = log 2 log z J 

q -  H D ( -  Y(q) )  p,(y_(q)) = q 
= H D ( - J ( q ) )  ~ log 2 

Therefore, as p(t) has lack of differentiability on t =  1, the same property 
holds for ~-(q), because 

p ( -  Y ( q ) ) =  log 2q 

The probabilities vt should be seen as the law of choosing the centers 
of the balls to cover the set [0, 1 ]. The probability v is the one where the 
transition to 6o in the critical parameter t = 1 occurs. 

In the terminology of ref. 13 that is borrowed from large-deviation 
theory, we have a transition at level 2, that is, at the level of measures. 1 

Now we would like to make some final remarks. 
The concepts of F. Ledrapier and L. S. Young of capacity and 

Hausdorff dimension of a measure allow some more flexibility in choosing 
at random the center of the balls in the definition of generalized dimension. 
The probability laws are given by the vt measures. 

The setting of generalized dimension (observables) is more natural for 
analyzing problems of phase transitions than the setting of pressure. 
Anyway, there is a strong relationship between both concepts: 
P( - Y(q) )  = log 2q. 

The relationship p'(t)= - l o g  2~ is a kind of Legendre Fenchel trans- 
form relationship of large-deviation theory. (14'16) 

Note that the sudden appearance of a delta-Dirae with mass one in the 
point 0~ [0, 1] can be seen, as mentioned in Section 1, as a sudden 
magnetization in the critical parameter. Remember that 0 e  [0, 1] is 
associated with the arrangement { 1, 1, 1, 1,... }. 

The generalized dimension is related to capacity and the results 
obtained in the setting of the pressure and thermodynamic formalism are 
in general related to the Hausdorff dimension. 

It is essential to have some connection between Hausdorff dimension 
and capacity. We postponed this consideration to the end of the paper in 
order to describe the model in a more transparent way. Now we will 
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provide the reader with a more precise and accurate formalization of the 
concepts with which we are dealing. 

It is well known that the values of capacity and dimension are not 
always the same for general sets. As we have already said, the concept of 
generalized dimension requires the use of capacity in one way or another 
in order to have the meaning that corresponds to partitions and 
thermodynamic limits. 

F. Ledrapier introduced the concept of capacity for measures, and the 
result of L.S. Young relates in a very general situation the concept of 
Hausdorff  dimension and capacity for a measure. This is an essential 
element for the understanding of a phase transition. 

We borrow the following statement from ref. 24: If the dimension of a 
set is to be related to the y-entropy and /~-exponents of a measure /~ 
invariant for f,  that notion of dimension must be sensitive to the "good 
points" of #. Capacity, however, does not distinguish between a set and its 
closure. F. Ledrapier made the following modification to correct this 
insensitivity. Let # be a Borel probability measure on X. Then define 

and 

where 

C(#) = sup inf _C(Y) 
n Y ~ X  

~ ~ .u( Y )  >~ 1 - - , 5  

C(g) = sup inf C(Y) 
Y ~ X  6 ~ 0  # (y )>~l - -6  

log N(~) 
_C(Y) = lim inf - -  

r log( l / i )  

C(Y) = lim sup log N(~) 
~ o  log(1/~) 

and N(~) is the minimum number of i-balls needed to cover Y. 
The result of L. S. Young claims that if for x/~-almost everywhere 

log p(B(x, p)) 
lim - ~o 
p -~ o log p 

then C(#) = _C(#) = c~ 0 = HD(u).  
From ref. 18, the hypothesis assumed in the above result is true; there- 

fore, we can use the conclusion of L. S. Young's result, and the reader can 
see how this point was essential in the correct establishment of the concept 
of generalized dimension of the maximal measure 2. 
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We now give a trivial example to elucidate some of the features of the 
above definition. 

Suppose X is the sequence of real numbers of the form 

X = { 1 , 2  ' , 3  ~,4 -I ..... n ~,.. .}u{0} 

Assume # is a probability such that the mass f f ( { n -1 } )=2  n and 

The Hausdorff dimension of # is trivially zero because X has dimen- 
sion zero. 

Note also that for x if-almost everywhere 

lira log I~(B(x, p ) )  _ 0 
p ~ o log p 

The capacity dimension of X is one, but we claim that the value 

8 0 , )  = C_O,) = 0 

The claim follows easily from the fact that, given ~ > 0, as Z ~ 2-n n = 0  

converges, then there exists N > 0  such that ~2~_N+1 2 "<~ .  Therefore, 
the set Y= { 1, 2 ~,..., N -1} satisfies #(Y) > 1 - 6, but has capacity zero. 

Even if the example is not directly related to our main result, we 
believe it gives an idea of the reason for using the above considerations. We 
can get rid of the "bad"  points. 

Generally speaking, the procedure physicists use most of the time to 
analyze equilibrium states in the lattice N is the following. They consider 
for each fixed n~ N the finite lattice {0, 1, 2,..., n -  1, n}, solve the problem 
of finding an equilibrium state in the finite lattice, and then take the limit 
as n goes to infinity, obtaining in the limit the equilibrium state. One of the 
differences in the model of the thermodynamic formalism is that one works 
with measures on {0, 1 } ~ and this means that we are not truncating the 
lattice N in a finite lattice and then taking the limit. Therefore, in 
thermodynamic formalism models, one has to use the notion of the entropy 
of a measure invariant for the shift, which is more sophisticated than the 
analogous one for the finite lattice. Some essential elements presented in 
the model here in the setting of thermodynamic formalism have no meaning 
or are difficult to translate for the other procedure of truncating the lattice 
N in finite pieces and taking thermodynamic limits. Note that the classic 
references for thermodynamic formalism do not consider phase transition 
problems (see refs. 20 and 23). 

In the example presented here, the Lebesgue measure on the interval 
(the maximal entropy measure for f )  plays the role of the Boltzmann 
factor. 
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3. AN EXAMPLE 

We present a class of examples where explicit computations can be 
obtained. We consider a slight generalization of a potential g (we use the 
notation of Section 2) considered by Hofbauer. (8) 

For each value of 7 we will have an example where the above 
considerations apply. 

Consider 3 < 7 and 

, [ k  + 2~ 
ak= - y  log ~ - ~ )  

and 

for k~>l 

a o = - l o g ( l +  ~ e al+' ' '+~k) 
k = l  

An easy computation shows that 

eSk=l and ~ (k+l)lSk<oo 
k = 0  1 = k  

(**) 

Therefore, given 3 < ?, the value Bo = Bo(7) is equal to 1 (see the notation 
of Section 2). 

Following Hofbauer, (8) we have that the function h (see Section 2) is 
an eigenfunction of the Ruelle-Perron-Frobenius operator and is given in 
the following way: Define first 

r k e a~ 

for 1 ~<k and ro=e% Consider now u= (Z~_~ krk-~) -1 and finally from 
ref. 8 we have that 

h(z)=urs ~ ~ rk for z e M k  
z = k  

As 3 < 7, h can be shown to be v-integrable. 
The Jacobian of the measure v is therefore given by the formula 

J z '  ( k+2)  v r[' z ~  ~=kr~ for z e Mk, k > l 
( ) = ~ - T  r ; !1  Z?_k l r ,  

The v measure of the set Mk is given by 

v(Mk)=u ~ ri 
l = k  
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Finally, the entropy of v is obtained in the following way. 
Consider the sets Qk, k~> 1, such that Qkc~ Mk = ~ and f(Qk)= 

f(Mk) = Mk_ 1. Note that 

I =  Mk w k 
k 1 k 1 

Note also from the invariance of # that v(Mk)+ v(Qk)= V(Mk-1); we have 

v(Qk)=urk 1 

In each Q~ the value of J(z) is equal to [ 1 - J ( x )  1]-1, where xeMk. 
From the above, we can compute the entropy 

h(v) = f log J(z) dr(z) 

-- ~ 1ogJ(Zk) V(Mk)+ ~ 108J(x~)v(Qk) 
k - - 1  k ; 1  

Zk ~ M k  Xk ~ Qk  

The same kind of computation also works for v ,  that is, we are able to 
compute h(vt), t ~ 1. In order to do that, we first compute the Jacobian of 
v, from the considerations of page 226 and 228 in ref. 8. 

Note the important fact that for a fixed valued of 7 in the variational 
problem 

P{-tlogJ(z)}=P{tg(z)}= sup {h(~)-t f logJ(z)d~(z)} 
~ M ( f )  

we are considering potentials tg(z) that are of the form of Hofbauer 

tg(z)=TtlOg\k+l J for zeMk, k>l  

The only difference is that for such tg(z) we have 2 ~ k=O exk < 1 [remember 
that tao is no longer in the form (**)]; therefore, the same explicit 
computations presented in ref. 8 apply. 

From these considerations we can say that p'(t)= -~  log J(z)dv,(z) 
can be explicitly computed and therefore, given c~ ~ N, we can in principle 
obtain t and finally v,. This measure v, can be obtained explicitly, as 
mentioned before (see page 226 and 228 of ref. 8). 

Finally, we can also compute the generalized dimension directly 
because we know explicitly v,(Mk) for k e N. In this way (following the 
notation of Section 2), given 3 > 0  and ~ > 0 ,  consider A of the form 
A = (Jk~| M~, where r is a set of indices, r  t~. (17) 
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As we know, v,(Mk) for kcO5 ; then we know when v t ( A ) >  1 -c~ and 
therefore all computa t ions  can be done. w)  

In conclusion, from the above considerations we can say that in the 
above class of examples it is possible to compute  with precision all values 
involved. The computa t ions  are, of course, not  simple, but  this is the 
nature of the problem. 
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NOTE A D D E D  IN PROOF 

In ref. 17 the following result related with Section 3 of this paper is 
obtained: consider 7 > 1 fixed, then the pressure p(t)  satisfies a functional 
equat ion of the kind 

~(7) ,= ~ e np(t) 
H t'/ 

n = l  

where ~(7) is the Riemann zeta function. As far as we know this functional 
equat ion was not  noticed before. F r o m  the above equat ion we give a 
r igorous mathematical  proof  that  

p ( t ) ~ h ( v ) ( 1 - t ) + ( 1 - t )  ~ ' + A ( 1 -  t) 2 

w h e n t ~ l  a n d 3 < 7 < 4 .  
The value 7 -  1 is the critical exponent  of transition, also considered 

in the physics literature by M. Fisher, B. Felderhof and X.-J. Wang. 
We will also prove in ref. 17 rigorous mathematical  results for the 

pressure of the Manneville Pomeau  map. 
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